Rotation numbers of invariant manifolds around unstable periodic orbits for the diamagnetic Kepler problem
نویسنده
چکیده
In this paper, a method to construct topological template in terms of symbolic dynamics for the diamagnetic Kepler problem is proposed. To confirm the topological template, rotation numbers of invariant manifolds around unstable periodic orbits in a phase space are taken as an object of comparison. The rotation numbers are determined from the definition and connected with symbolic sequences encoding the periodic orbits in a reduced Poincaré section. Only symbolic codes with inverse ordering in the forward mapping can contribute to the rotation of invariant manifolds around the periodic orbits. By using symbolic ordering, the reduced Poincaré section is constricted along stable manifolds and a topological template, which preserves the ordering of forward sequences and can be used to extract the rotation numbers, is established. The rotation numbers computed from the topological template are the same as those computed from their orig-
منابع مشابه
Confinement around the Vertical Family of Periodic Orbits Close to L and L
We consider the spatial restricted three body problem RTBP for values of the mass parameter close to Routh We analyse the dynamics around the vertical peri odic orbits which are born at the equilateral equilibrium points L and L and we describe the con nement around the complex unstable periodic orbits due to the D stable and unstable invariant manifolds
متن کاملPeriodic orbits in the concentric circular restricted four-body problem and their invariant manifolds
We give numerical calculations of periodic orbits in the planar concentric restricted four-body problem. It is assumed that the motion of a massless body is governed by three primaries m1, m2 and m3. We suppose that m1 >> m2,m3 and that, in an m1 centered inertial reference frame, m2 and m3 move in different circles about m1 and m1 is fixed. Although the motion of the primaries m1,m2,m3 do not ...
متن کاملNumerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system
This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two periodic orbits, the linear approximations of the corresponding manifolds and a point in a given ...
متن کاملLocal Approximation of Invariant Fiber Bundles: an Algorithmic Approach
This paper contains an approach to compute Taylor approximations of invariant manifolds associated with arbitrary fixed reference solutions of nonautonomous difference equations. Our framework is sufficiently general to include, e.g., stable and unstable manifolds of periodic orbits, or classical center-stable/-unstable manifolds corresponding to equilibria. In addition, our focus is to give ap...
متن کاملInvariant manifolds , phase correlations of chaotic orbits and the spiral structure of galaxies
In the presence of a strong m = 2 component in a rotating galaxy, the phase space structure near corotation is shaped to a large extent by the invariant manifolds of the short period family of unstable periodic orbits terminating at L1 or L2. The main effect of these manifolds is to create robust phase correlations among a number of chaotic orbits large enough to support a spiral density wave o...
متن کامل